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Abstract

Ross-Macdonald models are the most used framework to model vector-borne disease dynamics.
Here we present di�erent formulations of the Ross-Macdonald model using systems of ordinary
di�erential equations as well as individual based models. We compare the solutions using di�er-
ent distributions for the infectious and latency periods using statistics, like the epidemic peak,
or epidemic �nal size, to characterize the epidermic curves. The basic reproduction number
(R0) for each formulation is computed and compared with empirical estimations obtained with
the individual based models. The importance of considering the latency period distribution, as
well as the use of realistic distributions for the infectious periods is demonstrated and discussed.
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1 Introduction

Ross model was published in 1911 [11] and remains as the basis of countless models for vector-borne
diseases. Ross considered a simple model for malaria, with births and deaths but with constant
populations and infectious periods exponentially distributed. Humans and mosquitoes may have in
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only two classes, A�ected and Una�ected, (what here we will denoted by Hi, Hs, Vi, Vs). Then, Ross
model in continuous time reads

dHi

dt
= βhm

Vi
V

(H −Hi) − rhHi

dVi
dt

= βv
Hi

H
(V − V i) − µvVi

wherem is the number of mosquitoes per human (V/H), rh is the recovery rate for humans, µv is the
mortality rate for mosquitoes, and is βj the transmission parameters. This last may be decomposed
as βj = bfpj with b the mosquitoes biting rate, f the proportion of bites in humans, and pj the
probability of transmission per bite.

An equivalent formulation, more frequently used, and preferable is

dHi

dt
= βhVi

Hs

H
− rhHi

dVi
dt

= βvVs
Hi

H
− µvVi

After some contributions by Macdonald, models with these rates of infection were broadly called
Ross-Macdonald models. Ross and Macdonald analysis of the models were carried out at epidemio-
logical equilibrium.

For the Ross model, the basic reproduction number (R0), de�ned as the number of secondary
host cases produced by a typical infected host in a completely susceptible population is

R0 =
βhβv
rhµv

V

H

This celebrated result from Ross [11] shows that the basic reproduction number is proportional
to the number of vectors per host (V/H).

Since then models were developed for vector-borne diseases following this basic model including
superinfection, spatiality, time-varying populations and more (see for example [15, 4, 3, 9, 13, 16]).

2 General assumptions and parameters

In all the models considered in this work it is assumed that populations are homogeneously mixed.
Vector's bites are divided evenly among hosts, that is, every time a vector bites, chooses a host at
random.

Demography. Immigration and emigration are not considered. Births are assumed to take
place at a rate Λ. Deaths may be described by the mortality or by the survival function. Mortality
(µ) is the number of deaths per individual and per unit of time. In general it is an age-dependent
rate. The survival function, F̄ (a), is the proportion of individuals still alive at age a, and it is related

with the mortality by F̄ (a) = 1 − e
∫ a
0
µ(a′)da′ .

Epidemiology. Populations are divided in some of the following epidemiological classes: Suscep-
tible, Latent, Infectious, Recovered. Latent (or Exposed) individuals are infected but not infectious
(and therefore are unable to transmit the disease). Recovered individuals are immune, and therefore
do not participate of the transmission process. Duration of the latent period may be described for a
survival function of the age of infection: F̄e(s) gives the proportion of latent individuals who remain
latent at age of infection s (age of infection is the time elapsed since �rst infection). Analogously,
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F̄i(s) is the proportion of infectious individuals who remain infectious after a time s after the end
of latency. Alternatively we can use the, age-of-infection dependent, progression rates (from latency
to infectiousness) or recovery rates (from infectiousness to recovery).

All the periods considered (life span, latency period, infectious period) are random variables
what may be characterized by a probability distribution. The simple, and commonly used, case of
exponentially distributed periods correspond to constant, age independent, rates. For example using
a constant mortality rate µ imply the assumption of an exponentially distributed life span. In this
work we will consider only two cases: exponentially distributed period or �xed periods (for which
the survival function is a step function). In both cases the distributions are fully de�ned by the its
mean T . For an exponentially distributed period the probability density function is f(t) = 1

T e
−t/T ,

and the associated rate is µ = 1/T . For �xed periods we have f(t) = δ(t− T ) but associated rates
are not de�ned in this case.

Parameters de�ning the di�erent periods distributions are:

Th: Host life expectancy (mean lifespan)

Tv=Tvi: Vector life expectancy, mean infectious period for vectors

The: Mean latency period for exposed hosts

Thi: Mean infectious period for hosts

Tve: Mean latency period for vectors

In all cases we considered that vectors are infectious for life.
Entomological parameters. Biting rate on hosts (number of bites per vector, per unit of time,

on hosts) is denoted by b. Probabilities of transmission per bite are ph and pv (from vectors to hosts
and from hosts to vectors respectively). Finally we de�ne βh = phb, and βv = pvb.

Basic reproduction numbers. For a general Ross-Macdonald model the basic reproduction
number may be obtained by simple bookkeeping (Diekman and Heesterbeek 2000). One infectious
host will produce an average of βvV

1
H infected vectors per unit of time. If the mean infectious

period for hosts is Thi, then the total number of infected vectors is βvV
1
HThi. Only a fraction fv

will survive the latency period, and therefore, the total number of infectious vectors produced by
the initial infectious host is βvV

1
HThifv. Each infectious vector would produce βhTvi host infections

(Tvi is the mean infectious period for vectors) and only a fraction fh will survive the host latency
period. Finally the basic reproduction number is given by

R0 = βhβvThiTvifhfv
V

H
(1)

3 Deterministic Ross-Macdonald models

In a Ross-Macdonald model there are host and vector populations (of size H and V respectively)
homogenously mixed. Each population is subdivided in epidemiological classes. For example, sus-
ceptible and infectious host and vector populations (Hs, Hi, Vs Vi). Vectors bite at the rate b
(daily number of bites per vector, for example). If ph is the probability of infection transmission to
hosts per bite, pv the probability of vector infection per bite on infectious hosts, then the rate of
infection of susceptible hosts is given by phbVi

Hs

H while the rate of infection of susceptible vectors by

pvbVs
Hi

H . These functional forms for the infection rates are characteristic of all the Ross-Macdonald
type models. In the following we will present, discuss and compare the more common deterministic
models (without age structure).
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3.1 Basic Model

One of the most simple and general model is a SIR model for hosts and a SI model for vectors.
Mortalities are denoted by µ while recovery rates by r. Λ's are the recruitment rates. We will assume
that all the periods are exponentially distributed and therefore we obtain the following Basic model:

dHs

dt
= Λh − βhVi

Hs

H
− µhHs (2)

dHi

dt
= βhVi

Hs

H
− (rh + µh)Hi (3)

dHr

dt
= rhHi − µhHr (4)

dVs
dt

= Λv − βvVs
Hi

H
− µvVs (5)

dVi
dt

= βvVs
Hi

H
− µvVi (6)

where µh = 1/Th and µv = 1/Tv. Mean infectious period for host includes recovery and mortality,
and therefore in this case is given by Thi = 1/(rh+µh), from where recovery rate rh can be estimated.
Vectors are assumed to be infectious for life and then µv = 1/Tvi = 1/Tv.

Because in this model there are not latency periods, fh = fv = 1. The basic reproduction number
(1) for this model becomes

R
(1)
0 =

βhβv
(rh + µh)µv

V

H
(7)

The assumption of constant mortality for vectors is plausible as for insects we expect an approx-
imately constant daily probability of death. For hosts like birds, constant mortality are also usually
observed. However hosts like humans present a survival of type I: low mortality for ages below the
mean followed by a steep decrease in survival. In this case an age structured model for the host
population should be used. However in those cases we have that µh � µv and therefore we may
disregard birth and deaths in the host population when studying the short-term dynamics like in a
single outbreak, the case we are studying in this work.

Infectious period is also assumed exponentially distributed, a not realistic assumption. Host may
loose immunity becoming susceptible again, a case we do not consider in this work.

3.2 Basic Model with exposed classes

For both, hosts and vectors, there are latent periods and therefore a more realistic model is a SEIR
for hosts and a SEI for vectors (as in most cases vectors are infectious for life). The basic model
with latent classes (SEIR-SEI model) is:

4



dHs

dt
= Λh − βhVi

Hs

H
− µhHs (8)

dHe

dt
= βhVi

Hs

H
− (kh + µh)He (9)

dHi

dt
= khHe − (rh + µh)Hi (10)

dHr

dt
= rhHi − µhHr (11)

dVs
dt

= Λv − βvVs
Hi

H
− µvVs (12)

dVe
dt

= βvVs
Hi

H
− (kv + µv)Ve (13)

dVi
dt

= kvVe − µvVi (14)

Here, kh and kv are the progression rates from latency to infectiousness, and in this context are
given by kj = 1/Tje with Tje the mean latency period (j = h for hosts, and j = v for vectors).

In this case the basic reproduction number is

R
(2)
0 =

βhβv
(rh + µh)µv

(
kv

kv + µv

)(
kh

kh + µh

)
V

H
(15)

where fj = kj/(kj + µj) are the fractions of exposed individuals who survives the latency period.
The assumptions in this model are the same discussed above but here it also assumed that latent

periods are exponentially distributed a not realistic assumption neither. Once again kh � µh and
then kh

kh+µh
≈ 1.

3.3 Models with arbitrary distributions for the waiting periods

The assumption of exponentially distributed periods is appealing because the corresponding ODE
models have constant parameters. However latency or infectious periods are, in general, random
variables with non-exponential distributions.

In our case, where we are considering that vectors remains infectious for life, the infectious
period is the vector lifespan. In this case a constant mortality is a realistic choice and therefore the
infectious period is exponentially distributed. However this is not the case of vector's latent period
or latent and infectious host's periods.

As an example we will consider the simple case of a SIR − SI model. For vectors we have the
equations 5-6. For the host population we will consider that the infectious period (Thi) is a random
variable with probability distribution function f(s). As usual, the cumulative distribution is denoted
by F (s). The complementary cumulative distribution, F̄ (s) = 1 − F (s), is known as the survival
function and gives the probability that an individual infected in t = 0 remains infected at time s.
Because only the fraction F̄ (t − s) of the infections produced at time s survives until time t we
obtain the integral Volterra equations

Hs(t) = Hs(0) −
∫ t

0

βh
H
Vi(s)Hs(s)ds

Hi(t) = Hi(0)F̄ (t) +

∫ t

0

βh
H
Vi(s)Hs(s)F̄ (t− s)ds

Hr(t) = H −Hs(t) −Hi(t)
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Di�erentiation of Volterra equation gives the following system of integro-di�erential equations,

dHs

dt
= −βhVi

Hs

H

dHi

dt
= Hi(0)

dF̄

dt
+ βhVi

Hs

H
F̄ (0) +

∫ t

0

βh
H
Vi(s)Hs(s)

dF̄

dt
(t− s)ds

= −Hi(0)f(t) + βhVi
Hs

H
−
∫ t

0

βh
H
Vi(s)Hs(s)f(t− s)ds

Realistic distributions for infectious or latent periods are bell shaped and therefore survival
function is of type I. Then, a simple but realistic distribution is obtained for the limiting case of
�xed infectious period Thi. In this case the survival function is a step function, the probability
density distribution is δ(t− Thi), and therefore we obtain the delayed equation

dHi

dt
= −Hi(0)δ(t− Thi) + βhVi

Hs

H
− βhVi(t− Thi)

Hs(t− Thi)

H
(16)

3.3.1 Delayed Model

As mentioned before, vectors are usually infectious for life and mortality is approximately constant
(age-independent). Therefore the assumption of an exponentially distributed period of life is a
realistic choice. Latency periods, in hosts and vectors, are not exponentially distributed neither
the host infectious period. In this case, the choice of �xed periods introduce more realism into the
models while retaining simple numerical integration.

Disregarding births and deaths in the host population, a general and realistic model with latent
and infectious classes is the Delayed Model

dHs

dt
= −βhVi

Hs

H
(17)

dHe

dt
= βhVi

Hs

H
− βhVi(t− The)

Hs(t− The)

H
(18)

dHi

dt
= −Hi(0)δ(t− T ) + βhVi(t− The)

Hs(t− The)

H
− βhVi(t− The − Thi)

Hs(t− The − Thi)

H
(19)

dHr

dt
= βhVi(t− The − Thi)

Hs(t− The − Thi)

H
(20)

dVs
dt

= Λv − βvVs
Hi

H
− µvVs (21)

dVe
dt

= βvVs
Hi

H
− e−µvTveβvVs(t− Tve)

Hi(t− Tve)

H
− µvVe (22)

dVi
dt

= e−µvTveβvVs(t− Tve)
Hi(t− Tve)

H
− µvVi (23)

where Tve, The, and Thi are the (�xed) latency and infectious periods of vectors and hosts. As
discussed above, vector's infectious period is assumed exponentially distributed as we considered
a constant vector mortality rate. Host mortality is disregarded and then all latent host become
infectious (and then fh = 1). However only a fraction fv = e−µvTve of infected vectors survive the
latency period becoming infectious.

Therefore, for this model the basic reproduction number is
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R
(3)
0 = βhβvThi

1

µv
e−µvTve

V

H
(24)

From the expressions for the R0 values, Eqs. 7, 15 and 24 disregarding host mortality, we can
observe that

R
(2)
0 = R

(1)
0

(
kv

kv + µv

)
Since kv

kv+µv
< 1, then R

(1)
0 > R

(2)
0 . Furthermore, it can be demonstrated that kv

kv+µv
≥ e−µvTve .

Then, the basic reproduction numbers for the di�erent models satisfy

R
(1)
0 > R

(2)
0 > R

(3)
0 .

Therefore we expect larger and faster epidemics for the simple SIR− SI model (Eqs. 2 - 6). It
is possible to implicitly include the e�ect of latency in the vector population modifying the equation
6 as

dVi
dt

= e−µvTveβvVs
Hi

H
− µvVi (25)

The basic reproduction number for the modi�ed model is R
(3)
0 .

4 Individual based models

Individual based models (IBM) are a computational tool which allows to simulate populations dy-
namics considering the features of each individual in the population and the interaction between
them [7]. Although these models require a greater computational processing capacity, it does not
represent a strong limitation thanks to the progress of computer technology. Individual based mod-
els are considered the most realistic models where the mobility of each individual may be easily
incorporated [5, 10].

An IBM was developed to simulate the infection transmission dynamics of a vector-borne disease.
The model considers a SEIR for the host population and a SEI for the vector population. For each
host and vector, the followings attributes were considered: the epidemiological status (State) and
the time at which the epidemiological status changes (T_change). In this work, two di�erent cases
were considered: the case in which T_change is exponentially distributed (such as in the SEIR-SEI
model) and the case in which (some of) these times have �xed values (such as in the delayed model).

As before, we disregarded host births and deaths, whereas for the vector population we considered
constant motality (µv = 1/Tv) and a constant birth rate Λv. Thus, the probability of a vector dying
in a time interval of duration ∆t is equal to 1 − e−µv∆t . The demographic processes in the vector
population was simulated as follow. At each time step ∆t, and for each individual in the vector
population, a uniform distributed pseudo-random number was generated. If this number was less
than 1 − e−µv·∆t , the vector was removed from the vector population. We modeled the number of
newborns vectors in a time step by a Poisson random variable with parameter V0µv∆t.

The simulation procedure used is described in the following pseudo-code:

1. Set the host (H(0)) and vector (V (0)) population sizes.

2. Set the time step ∆t, the simulation duration tsim and the present time t equal to 0.

3. Set the values of parameters µv, pv, ph, kv, kh, γh, b.

4. Set the initial conditions Hs(0), He(0), Hi(0), Hr(0), Vs(0), Ve(0), Vi(0).
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5. While t ≤ tsim and 0 ≤ He(t) + Hi(t) + Ve(t) + Vi(t) /* this last sentence interrupts the
program when infections cannot takes place anymore */

(a) A random number of susceptible vector are added to the population according to a Poisson
distribution with parameter V0µv∆t

(b) For each vector in the population

i. A uniform random number is generated.

ii. If the number is less than or equal to b∆t, the vector bites.

The host bitten is chosen at random.

If host.State == INFECTED and vector.State == SUSCEPTIBLE

A uniform random number is generated.

If the number is less than or equal to pv, the mosquito becomes exposed

vector.State = EXPOSED, Vs(t) −−, Ve(t) + +

/* the operator �++� increases in 1 the value of the preceding variable and
the operator �- -� decreases in 1 the value of the preceding variable */

Set a exposed time vector.T_change.

If host.State == SUSCEPTIBLE and vector.State == INFECTED

A uniform random number is generated.

If the number is less than or equal to ph, the host becomes exposed

host.State = EXPOSED, Hs(t) −−, He(t) + +

Set a exposed time host.T_change.

iii. A uniform random number is generated.

iv. If the number is less than or equal to 1 − e−µv∆t

The vector dies and it is removed from vector population.

v. Else

If vector.State == EXPOSED and vector.T_change == t
vector.State = INFECTED, Ve(t) −−, Vi(t) + +

(c) For each host

i. If host.State == EXPOSED and host.T_change == t
host.State = INFECTED, He(t) −−, Hi(t) + +
Set a infectious time host.T_change

ii. If host.State == INFECTED and host.T_change == t
host.State = RECOVERED, Hi(t) −−, Hr(t) + +

5 Some numerical results

In all the cases, a initial population of vectors and hosts of 10000 individuals were considered. The
simulations start with one host infected, and all the other individuals susceptible. We used the day
as the unit of time.

5.1 Epidemic curves

In �gure 1 we compare numerical solutions of the models for low and high values of the basic
reproduction number (b = 0.3 and b = 0.5, respectively) considering the parameter values in the
table 1.
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Parameter Value
pv 0.75
ph 0.75
The 6 [days]
Thi 5 [days]
Tve 7 [days]
Tv 10 [days]

Table 1: Parameter values used in the simulations. In all cases we set host mortality equal to zero
(µh=0) while µv = 1/Tv =0.1 days−1.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
0

1 0 0

2 0 0

3 0 0
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2 2 5 0
2 5 0 0

HI

T i m e

Figure 1: Solutions of the deterministic models (Host infectious population). Left panel: low R0

(b = 0.3), right panel, high R0 (b = 0.5). From left to right: basic model (Eqs. 2 - 6), basic model
modi�ed (Eq. 25), SEIR-SEI model (Eqs. 8 - 14), delayed model (Eqs. 17 - 23). Time units in days.

In table 2 we show the corresponding R0 and some statistics of the epidemic curves (number of
infected host at the epidemic peak, time in which it is reached and the �nal epidemic size as propor-
tion of the total host population size) for each of the simulations presented in �gure 1 corresponding
to the di�erent deterministic models.

Similar results obtained with the individual based model are presented in table 3, where we
considered only the case of exponentially distributed periods (corresponding to the SEIR-SEI model
8 - 14, and �xed periods (corresponding to the Delayed model 17 - 23).

As we can see, the basic model produces faster epidemics with a higher epidemic �nal size (in
both cases). In the cases with low R0, the di�erences in the epidemic �nal size between the basic
model and the other model is really notorious, being more than double in some cases.

The basic model modi�ed and the delayed model present the sameR0 value and a similar epidemic
�nal size in both cases. However, the �rst one produces higher peaks in shorter times, resulting in a
epidemic that spreads through the population faster and runs out earlier. It is important to note that
taken into account the latency period in hosts and vectors produces lower epidemics, in comparison
with the basic model.

To compare the solution of the deterministic SEIR-SEI (Eqs. 8 - 14) and delayed models (Eqs.
17 - 23) with the IBM results, we realized simulations following the procedure explained above
considering the same parameter values (table 1), population sizes and initial conditions used with
the deterministic models.

Considering periods exponentially distributed, it can be observed that, if b = 0.3 (Fig. 2 - left
panel) the IBM simulations (in red) produce epidemic curves with di�erent peaks values. In some
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Model R0 Epidemic Peak Time Epidemic Final Size
Basic model 2.53 759 113 0.86

Basic model modi�ed 1.26 69.7 415 0.365
SEIR-SEI model 1.49 114.3 461.25 0.559
Delayed model 1.26 42.5 733.4 0.37

Model R0 Epidemic Peak Time Epidemic Final Size
Basic model 7.03 2250 45 0.99

Basic model modi�ed 3.50 1126 80 0.925
SEIR-SEI model 4.14 809 140 0.965
Delayed model 3.50 682 175 0.94

Table 2: Basic reproduction number, peak of the epidemic, duration from source case introduction
to peak and epidemic �nal size for the solutions of the di�erent Ross-Macdonald models considered
in in �gure 1 left panel (top) and right panel (bottom).

Type of model b
Epidemic Peak
Mean (SE)

Time
Mean (SE)

Epidemic Final Size
Mean (SE)

Number of
Simulations

Exponential
periods

0.3 144.64 (1.66) 363 (5.53) 0.56 (0.0023) 200
0.5 842.88 (2.17) 131.94 (1.08) 0.96 (0.00019) 200

Fixed
periods

0.3 69.48 (1.22) 517.91 (10.48) 0.36 (0.0043) 200
0.5 714.5 (1.86) 166.30 (1.38) 0.94 (0.00028) 200

Table 3: Peak of the epidemic, duration from source case introduction to peak and epidemic �nal
size for the solutions of the di�erent IBM Ross-Macdonald models.

cases higher than the deterministic result (in black), and in other cases lower. It is due to the
�uctuations (produced for the aleatory nature of the simulations), are large considering the values
of the epidemic curve. This situation is not observed in the epidemic curves resulting taking b = 0.5
(Fig. 2 - right panel). In this case, the epidemic curves produced by the IBM simulations (in red)
are similar in amplitude and height to the resulting considering the deterministic Ross-Macdonald
model. The observed di�erences in these situations can be explained taken into account the R0

value. In the cases in which R0 is not large, the stochastic �uctuations play an important role in
the epidemic dynamics producing very di�erent epidemic curves. As R0 increase, the stochasticity
produce a shift of the epidemic curve (to the left or to the right of the deterministic result), but it
does not greatly a�ect the height of the peak and the amplitude of the epidemic curve.

When we consider �xed periods (Fig. 3) we observe similar results. As the R0 value is smaller
than the value corresponding to periods exponentially distributed (considering b = 0.3), the stochas-
tic �uctuations are greater (Fig. 3 - left panel) and the di�erences between the IBM epidemic curves
and the deterministic are more signi�cant. On the other hand, considering b = 0.5, it can be observed
that the epidemic curves are similar, as observed before.

5.2 Computing R0 from the Individual Based Model

To compute R0 in the case of the individual based model, we have to follow the infectious generation
of hosts and vectors. So, the procedure realized is as follow. The �rst infected host is the only host
of �rst infected generation. The vectors infected by a host of �rst generation, are vectors of �rst
infected generation. When a vector of �rst infected generation, infects a susceptible hosts, these host
are second infected generation. In general, when a host of infected generation m infects a vector,
the infected generation of the vector is m. Then, when a vector of infected generation m infects a
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Figure 2: Disease dynamics considering periods exponentially distributed and the parameters in
table 1. In black the deterministic result, and in red the IBM simulation. Left panel: low R0 (b =
0.3); right panel, high R0 (b = 0.5).
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Figure 3: Disease dynamics considering �xed periods and the parameters in table 1. In black the
deterministic result, and in red the IBM simulation. Left panel: low R0 (b = 0.3); right panel, high
R0 (b = 0.5).

host, then infected generation of the host is m+ 1.
Let Hm be the number of infected-host generationm. Then, R0 can be estimated as R0 ≈ H3/H2

[2]. Due to the stochasticity of the IBM simulations, it is important to realize a considerable number
of simulations and then calculate the mean of the R0 value estimated for each simulation. An R0

estimation for the simulations analyzed en the previous section is presented in the table 4.

Type of model b
Deterministic

R0

Estimation
R0 ≈ H3/H2

SE
Number of
simulations

Exponential
periods

0.3 1.25 1.28 0.13 200
0.5 3.49 3.60 0.26 200

Fixed
periods

0.3 1.49 1.45 0.12 200
0.5 4.14 4.03 0.22 200

Table 4: Estimation of R0 from the IBM model.

As we can see in Eqs. 15 and 24, given the parameters of the host and vector populations, R0 is
a linear function of the relation V/H. So, varying the relation V/H, we can obtain di�erent values
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of R0.
Considering the parameters in the table 1 and a biting rate equal to 0.3 (b = 0.3), we estimated

the value of R0 from the individual based model for di�erent values of V/H. The results considering
exponentially distributed periods and �xed period are shown in the Fig. 4, respectively. In all
the cases, a initial population of 10000 hosts was considered, with only one infected host. Each
estimation of the basic reproduction number was realized with 200 simulations.
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Figure 4: Empirical estimates of the Basic reproduction numbers (squares, bars are standard errors)
obtained with the IBM for the cases of exponentially distributed periods (left) and �xed period
(right). Continuous line are the corresponding theoretical values given by expressions (15) and (24).

As can be seen in the �gure 4 numerical estimations of the basic reproductive number match the
theoretical values within the inherent error of the random nature of the IBM results.

6 Discussion and Conclusions

Ross-Macdonald model has been studied and applied to model the dynamic of di�erent infectious
diseases such as: malaria, dengue, yellow fever, among others (see for example [14, 12, 9, 1]). It
provides a simple framework to model vector-borne diseases.

In this work we present di�erent formulations of the Ross-Macdonald model using ordinary
di�erential equations. In the most general case we included latency periods in both vectors and
hosts. We also considered di�erent distributions for latency and infectious periods: exponentially
distributed periods and �xed periods. Then, we developed the analogous individual based models
and compared the results of the simulations. The more realistic case includes �xed latency periods
and infectious periods (except for vector's infectious periods which are already well modeled by an
exponential distribution).

A central assumption of the Ross-Macdonald models is homogeneous random mixing: probability
of biting in a susceptible host is proportional to the fraction of susceptible host in the entire popu-
lation. This hypothesis may hold for some local, relatively small, populations. Larger populations
may be modeled using a meta-population approach, for example. If local populations have some
degree of synchronization, the total population disease dynamics could be quasi-deterministic (see
for example [6]), and perhaps a Ross-Macdonald model may describe the global dynamics of the
system. In this work we considered populations of 104 individuals, a large enough population for
which it is not obvious that the assumption of homogeneous mixing holds. For low values of the basic
reproduction number, solutions of the deterministic models and realizations of the individual based
model are statistical similar (see �g. 3 and tables 2 and 3), but each realization may be signi�cantly
di�erent from the deterministic solution.
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As we show in this work, disregarding latency periods has a dramatic e�ect in the dynamics.
This is quite apparent for low basic reproduction numbers (see Fig. 1). As in most vector-borne
diseases vector's latency periods and life expectancy are of the same order of magnitude, disregarding
latency overestimate the basic reproduction number, and therefore we observed faster epidemics
with signi�cantly higher peaks. A substantial improvement is achieved with the simple modi�cation
(25) which produces the same values of R0 as the delayed model but still the epidemic curves are
signi�cantly di�erent.

Not only the inclusion of latency periods is important but also its distributions. Using exponen-
tially distributed periods leads to slightly smaller basic reproduction numbers and still a noticeable
di�erences in the epidemic curves.

Deterministic models, like the SEIR-SEI model 8-14, are simple ordinary di�erential equations
systems with constant parameters, more amenable for analysis. Numerical integration is straight-
forward using Runge-Kutta of fourth order, for example. The more realistic choice of �xed periods
is modeled by delayed di�erential equations. Analysis is more complex for these type of models but
numerical integration is easily implemented too.

For the individual based model there are not di�erences, neither in the di�culty of the coding or
in the computational cost for both cases, and therefore non-exponentially distributed periods (like
�xed periods) is the recommended choice.

In our simulations we considered parameter values compatible with some vector-borne diseases in
humans like dengue. In all cases the number of vectors per host was set equal to one at demographic
equilibrium. For low values of the basic reproduction number epidemics obtained with the (most
realistic) �xed period models have a duration of more than two years (see Fig. 3, left panel), which
is never observed in real epidemics. This results highlights the importance of including seasonality
when modeling some vector-borne diseases. Vector populations usually have seasonal �uctuations,
driven by rainfall, for example, which shape the duration of the epidemics.
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