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Abstract

Ross-Macdonald models are the most used framework to model vector-borne disease dynamics.
Here we present different formulations of the Ross-Macdonald model using systems of ordinary
differential equations as well as individual based models. We compare the solutions using differ-
ent distributions for the infectious and latency periods using statistics, like the epidemic peak,
or epidemic final size, to characterize the epidermic curves. The basic reproduction number
(Ro) for each formulation is computed and compared with empirical estimations obtained with
the individual based models. The importance of considering the latency period distribution, as
well as the use of realistic distributions for the infectious periods is demonstrated and discussed.
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1 Introduction

Ross model was published in 1911 [11] and remains as the basis of countless models for vector-borne
diseases. Ross considered a simple model for malaria, with births and deaths but with constant
populations and infectious periods exponentially distributed. Humans and mosquitoes may have in
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only two classes, Affected and Unaffected, (what here we will denoted by H;, H,, V;, V). Then, Ross
model in continuous time reads

dH;, v
7 —ﬁhmV(H H;) —rpH;
v, . H .

dt _ﬁvﬁ(v VZ) ,va‘/z

where m is the number of mosquitoes per human (V/H), r, is the recovery rate for humans, p, is the
mortality rate for mosquitoes, and is §; the transmission parameters. This last may be decomposed
as B; = bfp; with b the mosquitoes biting rate, f the proportion of bites in humans, and p; the
probability of transmission per bite.

An equivalent formulation, more frequently used, and preferable is

dH; H,
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After some contributions by Macdonald, models with these rates of infection were broadly called
Ross-Macdonald models. Ross and Macdonald analysis of the models were carried out at epidemio-
logical equilibrium.

For the Ross model, the basic reproduction number (Ry), defined as the number of secondary
host cases produced by a typical infected host in a completely susceptible population is

Ro = 5hﬁv V

0

Thlbv H

This celebrated result from Ross [11] shows that the basic reproduction number is proportional
to the number of vectors per host (V/H).

Since then models were developed for vector-borne diseases following this basic model including
superinfection, spatiality, time-varying populations and more (see for example [15, 4, 3, 9, 13, 16]).

2 General assumptions and parameters

In all the models considered in this work it is assumed that populations are homogeneously mixed.
Vector’s bites are divided evenly among hosts, that is, every time a vector bites, chooses a host at
random.

Demography. Immigration and emigration are not considered. Births are assumed to take
place at a rate A. Deaths may be described by the mortality or by the survival function. Mortality
() is the number of deaths per individual and per unit of time. In general it is an age-dependent
rate. The survival function, F'(a), is the proportion of individuals still alive at age a, and it is related
with the mortality by F(a) = 1 — eJo #(a’)da’,

Epidemiology. Populations are divided in some of the following epidemiological classes: Suscep-
tible, Latent, Infectious, Recovered. Latent (or Exposed) individuals are infected but not infectious
(and therefore are unable to transmit the disease). Recovered individuals are immune, and therefore
do not participate of the transmission process. Duration of the latent period may be described for a
survival function of the age of infection: F,(s) gives the proportion of latent individuals who remain
latent at age of infection s (age of infection is the time elapsed since first infection). Analogously,



F(s) is the proportion of infectious individuals who remain infectious after a time s after the end
of latency. Alternatively we can use the, age-of-infection dependent, progression rates (from latency
to infectiousness) or recovery rates (from infectiousness to recovery).

All the periods considered (life span, latency period, infectious period) are random variables
what may be characterized by a probability distribution. The simple, and commonly used, case of
exponentially distributed periods correspond to constant, age independent, rates. For example using
a constant mortality rate p imply the assumption of an exponentially distributed life span. In this
work we will consider only two cases: exponentially distributed period or fixed periods (for which
the survival function is a step function). In both cases the distributions are fully defined by the its
mean T'. For an exponentially distributed period the probability density function is f(t) = %e*t/T,
and the associated rate is 4 = 1/T. For fixed periods we have f(t) = §(t — T') but associated rates
are not defined in this case.

Parameters defining the different periods distributions are:

Ty: Host life expectancy (mean lifespan)

T,=T,;: Vector life expectancy, mean infectious period for vectors
The: Mean latency period for exposed hosts

Ty;: Mean infectious period for hosts

Tye: Mean latency period for vectors

In all cases we considered that vectors are infectious for life.

Entomological parameters. Biting rate on hosts (number of bites per vector, per unit of time,
on hosts) is denoted by b. Probabilities of transmission per bite are p;, and p, (from vectors to hosts
and from hosts to vectors respectively). Finally we define 85, = ppb, and 3, = p,b.

Basic reproduction numbers. For a general Ross-Macdonald model the basic reproduction
number may be obtained by simple bookkeeping (Diekman and Heesterbeek 2000). One infectious
host will produce an average of ﬁUV% infected vectors per unit of time. If the mean infectious
period for hosts is Tj;, then the total number of infected vectors is [%V%Thi. Only a fraction f,
will survive the latency period, and therefore, the total number of infectious vectors produced by
the initial infectious host is BUV%TM fv. Each infectious vector would produce 8, T,,; host infections
(Ty; is the mean infectious period for vectors) and only a fraction f; will survive the host latency
period. Finally the basic reproduction number is given by

Ry = BhﬁvThiTvifhfv% (1)

3 Deterministic Ross-Macdonald models

In a Ross-Macdonald model there are host and vector populations (of size H and V respectively)
homogenously mixed. Each population is subdivided in epidemiological classes. For example, sus-
ceptible and infectious host and vector populations (Hs, H;, Vs V;). Vectors bite at the rate b
(daily number of bites per vector, for example). If p, is the probability of infection transmission to
hosts per bite, p, the probability of vector infection per bite on infectious hosts, then the rate of
infection of susceptible hosts is given by pp,bV; 1;1{ while the rate of infection of susceptible vectors by
pvas%. These functional forms for the infection rates are characteristic of all the Ross-Macdonald
type models. In the following we will present, discuss and compare the more common deterministic

models (without age structure).




3.1 Basic Model

One of the most simple and general model is a STR model for hosts and a SI model for vectors.
Mortalities are denoted by p while recovery rates by r. A’s are the recruitment rates. We will assume
that all the periods are exponentially distributed and therefore we obtain the following Basic model:
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where pup, = 1/T}, and p,, = 1/T,. Mean infectious period for host includes recovery and mortality,
and therefore in this case is given by Tp; = 1/(rp+pup), from where recovery rate 7, can be estimated.
Vectors are assumed to be infectious for life and then p, = 1/T,; = 1/T5,.

Because in this model there are not latency periods, f, = f, = 1. The basic reproduction number
(1) for this model becomes

W BBV
Ry = —— (7)
(rn =+ pn ) po H
The assumption of constant mortality for vectors is plausible as for insects we expect an approx-
imately constant daily probability of death. For hosts like birds, constant mortality are also usually
observed. However hosts like humans present a survival of type I: low mortality for ages below the
mean followed by a steep decrease in survival. In this case an age structured model for the host
population should be used. However in those cases we have that u; < u, and therefore we may
disregard birth and deaths in the host population when studying the short-term dynamics like in a
single outbreak, the case we are studying in this work.
Infectious period is also assumed exponentially distributed, a not realistic assumption. Host may
loose immunity becoming susceptible again, a case we do not consider in this work.

3.2 Basic Model with exposed classes

For both, hosts and vectors, there are latent periods and therefore a more realistic model is a SEIR
for hosts and a SEI for vectors (as in most cases vectors are infectious for life). The basic model
with latent classes (SEIR-SEI model) is:
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Here, kj, and k, are the progression rates from latency to infectiousness, and in this context are
given by k; = 1/T;. with T}, the mean latency period (j = h for hosts, and j = v for vectors).
In this case the basic reproduction number is

2) _ ﬁhﬁv ( ky ) ( kn ) 14
Ry = — 15
0 (rn + pr) o \ ko + o kn+pn ) H (15)

where f; = k;/(k; + p1;) are the fractions of exposed individuals who survives the latency period.
The assumptions in this model are the same discussed above but here it also assumed that latent
periods are exponentially distributed a not realistic assumption neither. Once again k;, > up and

kn  ~
then T 1.

3.3 Models with arbitrary distributions for the waiting periods

The assumption of exponentially distributed periods is appealing because the corresponding ODE
models have constant parameters. However latency or infectious periods are, in general, random
variables with non-exponential distributions.

In our case, where we are considering that vectors remains infectious for life, the infectious
period is the vector lifespan. In this case a constant mortality is a realistic choice and therefore the
infectious period is exponentially distributed. However this is not the case of vector’s latent period
or latent and infectious host’s periods.

As an example we will consider the simple case of a STR — ST model. For vectors we have the
equations 5-6. For the host population we will consider that the infectious period (7};) is a random
variable with probability distribution function f(s). As usual, the cumulative distribution is denoted
by F(s). The complementary cumulative distribution, F'(s) = 1 — F(s), is known as the survival
function and gives the probability that an individual infected in ¢ = 0 remains infected at time s.
Because only the fraction F(t — s) of the infections produced at time s survives until time ¢ we
obtain the integral Volterra equations

"B
H(t) = Hs(0) — ; ﬁVi(s)Hs(s)ds
H;(t) = H;(0)F(t) + ; %W(S)HS(S)F@ — 8)ds



Differentiation of Volterra equation gives the following system of integro-differential equations,

dH H,
a
dH; dF H, - t B, dF
= H;(0)— 2 F Ehyi(s)Hy(s)=—(t — s)d
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= HO) (1) + BV — [ D)) 70— s)as
0
Realistic distributions for infectious or latent periods are bell shaped and therefore survival
function is of type I. Then, a simple but realistic distribution is obtained for the limiting case of
fixed infectious period Tp;. In this case the survival function is a step function, the probability
density distribution is §(¢t — T},;), and therefore we obtain the delayed equation
dH;

H,
Tl —H;(0)6(t — Thi) + Bhviﬁ — BrVi(t — Ths)

Hs (t _ Thi)
H

(16)

3.3.1 Delayed Model

As mentioned before, vectors are usually infectious for life and mortality is approximately constant
(age-independent). Therefore the assumption of an exponentially distributed period of life is a
realistic choice. Latency periods, in hosts and vectors, are not exponentially distributed neither
the host infectious period. In this case, the choice of fixed periods introduce more realism into the
models while retaining simple numerical integration.

Disregarding births and deaths in the host population, a general and realistic model with latent
and infectious classes is the Delayed Model
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where Tye, The, and Tp; are the (fixed) latency and infectious periods of vectors and hosts. As
discussed above, vector’s infectious period is assumed exponentially distributed as we considered
a constant vector mortality rate. Host mortality is disregarded and then all latent host become
infectious (and then f;, = 1). However only a fraction f, = e #+T»¢ of infected vectors survive the
latency period becoming infectious.

Therefore, for this model the basic reproduction number is



y (24)

From the expressions for the Ry values, Eqs. 7, 15 and 24 disregarding host mortality, we can

observe that
k
R(2) — R(l) v
0 0 kv +/J"U

Since ’f: < 1, then Rél) > R(()Q). Furthermore, it can be demonstrated that - lfl:u > g HvTve,
Then, the basic reproduction numbers for the different models satisfy

1 _ 1%
B = it enne ¥

R" > R? > R{Y.

Therefore we expect larger and faster epidemics for the simple STR — ST model (Egs. 2 - 6). It
is possible to implicitly include the effect of latency in the vector population modifying the equation
6 as

dv; H;
Lot Toeg VoL Vi 25
7 ¢ BoVs—gr — 1 (25)

The basic reproduction number for the modified model is R(()3).

4 Individual based models

Individual based models (IBM) are a computational tool which allows to simulate populations dy-
namics considering the features of each individual in the population and the interaction between
them [7]. Although these models require a greater computational processing capacity, it does not
represent a strong limitation thanks to the progress of computer technology. Individual based mod-
els are considered the most realistic models where the mobility of each individual may be easily
incorporated [5, 10].

An IBM was developed to simulate the infection transmission dynamics of a vector-borne disease.
The model considers a SEIR for the host population and a SEI for the vector population. For each
host and vector, the followings attributes were considered: the epidemiological status (State) and
the time at which the epidemiological status changes (T change). In this work, two different cases
were considered: the case in which T change is exponentially distributed (such as in the SEIR-SEI
model) and the case in which (some of) these times have fixed values (such as in the delayed model).

As before, we disregarded host births and deaths, whereas for the vector population we considered
constant motality (u, = 1/T;,) and a constant birth rate A,. Thus, the probability of a vector dying
in a time interval of duration At is equal to 1 — e #*2¢. The demographic processes in the vector
population was simulated as follow. At each time step At, and for each individual in the vector
population, a uniform distributed pseudo-random number was generated. If this number was less
than 1 — e~#"2¢ ) the vector was removed from the vector population. We modeled the number of
newborns vectors in a time step by a Poisson random variable with parameter Vi, At.

The simulation procedure used is described in the following pseudo-code:

1. Set the host (H(0)) and vector (V' (0)) population sizes.

2. Set the time step At, the simulation duration tg;,, and the present time ¢ equal to 0.
3. Set the values of parameters (i, Dy, Pr, kv, kb, Yh, b-

4. Set the initial conditions H(0), H.(0), H;(0), H,(0), V5(0), V.(0), V;(0).



5. While ¢ < tgm and 0 < H(t) + H;(t) + Ve(t) + Vi(¢t) /* this last sentence interrupts the
program when infections cannot takes place anymore */

(a) A random number of susceptible vector are added to the population according to a Poisson
distribution with parameter Vou, At

(b) For each vector in the population

i. A uniform random number is generated.
ii. If the number is less than or equal to bAt, the vector bites.
The host bitten is chosen at random.
If host.State == INFECTED and vector.State == SUSCEPTIBLE
A uniform random number is generated.
If the number is less than or equal to p,, the mosquito becomes exposed
vector.State = EXPOSED, V(t) — —, V.(¢) + +

/* the operator “++” increases in 1 the value of the preceding variable and
the operator “- -” decreases in 1 the value of the preceding variable */

Set a exposed time vector.T change.
If host.State == SUSCEPTIBLE and vector.State =—— INFECTED

A uniform random number is generated.
If the number is less than or equal to py, the host becomes exposed
host.State = EXPOSED, H,(t) — —, Ho(t) + +
Set a exposed time host.T change.
iii. A uniform random number is generated.
iv. If the number is less than or equal to 1 — e ~#v4+
The vector dies and it is removed from vector population.
v. Else
If vector.State == EXPOSED and vector.T change ==t
vector.State = INFECTED, V,(t) — —, Vi(¢t) + +
(¢) For each host

i. If host.State == EXPOSED and host.T change ==
host.State = INFECTED, H.(t) — —, H;(t) + +
Set a infectious time host.T change

ii. If host.State == INFECTED and host.T change ==
host.State = RECOVERED, H;(t) — —, H.(t) + +

5 Some numerical results

In all the cases, a initial population of vectors and hosts of 10000 individuals were considered. The
simulations start with one host infected, and all the other individuals susceptible. We used the day
as the unit of time.

5.1 Epidemic curves

In figure 1 we compare numerical solutions of the models for low and high values of the basic
reproduction number (b = 0.3 and b = 0.5, respectively) considering the parameter values in the
table 1.



Parameter Value

Py 0.75
on 0.75

The 6 [days]
Thi 5 [days|
Toe 7 [days]
T, 10 [days]

Table 1: Parameter values used in the simulations. In all cases we set host mortality equal to zero
(1n=0) while p, = 1/T, =0.1 days™.
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Figure 1: Solutions of the deterministic models (Host infectious population). Left panel: low Ry
(b = 0.3), right panel, high Ry (b = 0.5). From left to right: basic model (Eqgs. 2 - 6), basic model
modified (Eq. 25), SEIR-SEI model (Eqgs. 8 - 14), delayed model (Egs. 17 - 23). Time units in days.

In table 2 we show the corresponding Ry and some statistics of the epidemic curves (number of
infected host at the epidemic peak, time in which it is reached and the final epidemic size as propor-
tion of the total host population size) for each of the simulations presented in figure 1 corresponding
to the different deterministic models.

Similar results obtained with the individual based model are presented in table 3, where we
considered only the case of exponentially distributed periods (corresponding to the SEIR-SEI model
8 - 14, and fixed periods (corresponding to the Delayed model 17 - 23).

As we can see, the basic model produces faster epidemics with a higher epidemic final size (in
both cases). In the cases with low Ry, the differences in the epidemic final size between the basic
model and the other model is really notorious, being more than double in some cases.

The basic model modified and the delayed model present the same Ry value and a similar epidemic
final size in both cases. However, the first one produces higher peaks in shorter times, resulting in a
epidemic that spreads through the population faster and runs out earlier. It is important to note that
taken into account the latency period in hosts and vectors produces lower epidemics, in comparison
with the basic model.

To compare the solution of the deterministic SEIR-SEI (Egs. 8 - 14) and delayed models (Egs.
17 - 23) with the IBM results, we realized simulations following the procedure explained above
considering the same parameter values (table 1), population sizes and initial conditions used with
the deterministic models.

Considering periods exponentially distributed, it can be observed that, if b = 0.3 (Fig. 2 - left
panel) the IBM simulations (in red) produce epidemic curves with different peaks values. In some



Model Ry Epidemic Peak Time Epidemic Final Size

Basic model 2.53 759 113 0.86
Basic model modified 1.26 69.7 415 0.365
SEIR-SEI model 1.49 114.3 461.25 0.559
Delayed model 1.26 42.5 733.4 0.37
Model Ry Epidemic Peak Time Epidemic Final Size

Basic model 7.03 2250 45 0.99
Basic model modified 3.50 1126 80 0.925
SEIR-SEI model 4.14 809 140 0.965
Delayed model 3.50 682 175 0.94

Table 2: Basic reproduction number, peak of the epidemic, duration from source case introduction
to peak and epidemic final size for the solutions of the different Ross-Macdonald models considered
in in figure 1 left panel (top) and right panel (bottom).

T fmodel b Epidemic Peak Time Epidemic Final Size  Number of
ype ot mode Mean (SE) Mean (SE) Mean (SE) Simulations
Exponential 0.3 144.64 (1.66) 363 (5.53) 0.56 (0.0023) 200

periods 0.5 842.88 (2.17)  131.94 (1.08) 0.96 (0.00019) 200
Fixed 0.3  69.48 (1.22) 517.91 (10.48) 0.36 (0.0043) 200
periods 0.5  714.5 (1.86) 166.30 (1.38) 0.94 (0.00028) 200

Table 3: Peak of the epidemic, duration from source case introduction to peak and epidemic final
size for the solutions of the different IBM Ross-Macdonald models.

cases higher than the deterministic result (in black), and in other cases lower. It is due to the
fluctuations (produced for the aleatory nature of the simulations), are large considering the values
of the epidemic curve. This situation is not observed in the epidemic curves resulting taking b = 0.5
(Fig. 2 - right panel). In this case, the epidemic curves produced by the IBM simulations (in red)
are similar in amplitude and height to the resulting considering the deterministic Ross-Macdonald
model. The observed differences in these situations can be explained taken into account the Ry
value. In the cases in which Ry is not large, the stochastic fluctuations play an important role in
the epidemic dynamics producing very different epidemic curves. As Ry increase, the stochasticity
produce a shift of the epidemic curve (to the left or to the right of the deterministic result), but it
does not greatly affect the height of the peak and the amplitude of the epidemic curve.

When we consider fixed periods (Fig. 3) we observe similar results. As the Ry value is smaller
than the value corresponding to periods exponentially distributed (considering b = 0.3), the stochas-
tic fluctuations are greater (Fig. 3 - left panel) and the differences between the IBM epidemic curves
and the deterministic are more significant. On the other hand, considering b = 0.5, it can be observed
that the epidemic curves are similar, as observed before.

5.2 Computing R, from the Individual Based Model

To compute Ry in the case of the individual based model, we have to follow the infectious generation
of hosts and vectors. So, the procedure realized is as follow. The first infected host is the only host
of first infected generation. The vectors infected by a host of first generation, are vectors of first
infected generation. When a vector of first infected generation, infects a susceptible hosts, these host
are second infected generation. In general, when a host of infected generation m infects a vector,
the infected generation of the vector is m. Then, when a vector of infected generation m infects a

10
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Figure 2: Disease dynamics considering periods exponentially distributed and the parameters in
table 1. In black the deterministic result, and in red the IBM simulation. Left panel: low Rq (b =
0.3); right panel, high Ry (b = 0.5).
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Figure 3: Disease dynamics considering fixed periods and the parameters in table 1. In black the
deterministic result, and in red the IBM simulation. Left panel: low Ry (b = 0.3); right panel, high
Ry (b = 0.5).

host, then infected generation of the host is m + 1.

Let H,, be the number of infected-host generation m. Then, Ry can be estimated as Ry ~ H3/Hs
[2]. Due to the stochasticity of the IBM simulations, it is important to realize a considerable number
of simulations and then calculate the mean of the Ry value estimated for each simulation. An Ry
estimation for the simulations analyzed en the previous section is presented in the table 4.

Tvpe of model b Deterministic Estimation Numbe.r of
yp Ry Ry~ Hs/H> simulations
Exponential 0.3 1.25 1.28 0.13 200

periods 0.5 3.49 3.60 0.26 200
Fixed 0.3 1.49 1.45 0.12 200
periods 0.5 4.14 4.03 0.22 200

Table 4: Estimation of Ry from the IBM model.

As we can see in Eqgs. 15 and 24, given the parameters of the host and vector populations, Ry is
a linear function of the relation V/H. So, varying the relation V/H, we can obtain different values

11



of R().

Considering the parameters in the table 1 and a biting rate equal to 0.3 (b = 0.3), we estimated
the value of Ry from the individual based model for different values of V/H. The results considering
exponentially distributed periods and fixed period are shown in the Fig. 4, respectively. In all
the cases, a initial population of 10000 hosts was considered, with only one infected host. Each
estimation of the basic reproduction number was realized with 200 simulations.

T
0.6 0.8 1.0 12
VIH

T
14

3.04

254

204

154
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T T
0.8 1.0 12 14 1.6 18 2.0
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Figure 4: Empirical estimates of the Basic reproduction numbers (squares, bars are standard errors)
obtained with the IBM for the cases of exponentially distributed periods (left) and fixed period
(right). Continuous line are the corresponding theoretical values given by expressions (15) and (24).

As can be seen in the figure 4 numerical estimations of the basic reproductive number match the
theoretical values within the inherent error of the random nature of the IBM results.

6 Discussion and Conclusions

Ross-Macdonald model has been studied and applied to model the dynamic of different infectious
diseases such as: malaria, dengue, yellow fever, among others (see for example [14, 12, 9, 1]). It
provides a simple framework to model vector-borne diseases.

In this work we present different formulations of the Ross-Macdonald model using ordinary
differential equations. In the most general case we included latency periods in both vectors and
hosts. We also considered different distributions for latency and infectious periods: exponentially
distributed periods and fixed periods. Then, we developed the analogous individual based models
and compared the results of the simulations. The more realistic case includes fixed latency periods
and infectious periods (except for vector’s infectious periods which are already well modeled by an
exponential distribution).

A central assumption of the Ross-Macdonald models is homogeneous random mixing: probability
of biting in a susceptible host is proportional to the fraction of susceptible host in the entire popu-
lation. This hypothesis may hold for some local, relatively small, populations. Larger populations
may be modeled using a meta-population approach, for example. If local populations have some
degree of synchronization, the total population disease dynamics could be quasi-deterministic (see
for example [6]), and perhaps a Ross-Macdonald model may describe the global dynamics of the
system. In this work we considered populations of 10* individuals, a large enough population for
which it is not obvious that the assumption of homogeneous mixing holds. For low values of the basic
reproduction number, solutions of the deterministic models and realizations of the individual based
model are statistical similar (see fig. 3 and tables 2 and 3), but each realization may be significantly
different from the deterministic solution.

12



As we show in this work, disregarding latency periods has a dramatic effect in the dynamics.
This is quite apparent for low basic reproduction numbers (see Fig. 1). As in most vector-borne
diseases vector’s latency periods and life expectancy are of the same order of magnitude, disregarding
latency overestimate the basic reproduction number, and therefore we observed faster epidemics
with significantly higher peaks. A substantial improvement is achieved with the simple modification
(25) which produces the same values of Ry as the delayed model but still the epidemic curves are
significantly different.

Not only the inclusion of latency periods is important but also its distributions. Using exponen-
tially distributed periods leads to slightly smaller basic reproduction numbers and still a noticeable
differences in the epidemic curves.

Deterministic models, like the SEIR-SEI model 8-14, are simple ordinary differential equations
systems with constant parameters, more amenable for analysis. Numerical integration is straight-
forward using Runge-Kutta of fourth order, for example. The more realistic choice of fixed periods
is modeled by delayed differential equations. Analysis is more complex for these type of models but
numerical integration is easily implemented too.

For the individual based model there are not differences, neither in the difficulty of the coding or
in the computational cost for both cases, and therefore non-exponentially distributed periods (like
fixed periods) is the recommended choice.

In our simulations we considered parameter values compatible with some vector-borne diseases in
humans like dengue. In all cases the number of vectors per host was set equal to one at demographic
equilibrium. For low values of the basic reproduction number epidemics obtained with the (most
realistic) fixed period models have a duration of more than two years (see Fig. 3, left panel), which
is never observed in real epidemics. This results highlights the importance of including seasonality
when modeling some vector-borne diseases. Vector populations usually have seasonal fluctuations,
driven by rainfall, for example, which shape the duration of the epidemics.
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